
eering,

PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Analytical solution for photorefractive screening solitons
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We study formation and interaction of one-dimensional screening solitons in a photorefractive medium with
sublinear dependence of the photoconductivity on light intensity. We find an exact analytical solution to the
corresponding nonlinear Schro¨dinger equation. We show that these solitons are stable in propagation and their
interaction is generic for solitons of saturable nonlinearity. In particular, they may fuse or ‘‘give birth’’ to new
solitons upon collision.

PACS number~s!: 42.65.Tg, 42.65.Jx, 42.65.Hw
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The subject of screening spatial optical solitons in pho
refractive crystals has attracted great interest in recent ye
Screening solitons can be created using a very low opt
power of the order of microwatts@1–4#. They are formed
when the presence of an optical beam results in the scree
of the external biasing dc field by a space charge field
duced by distribution of photoexcited charge carriers. T
resulting effective electric field modulates the refractive
dex of the medium via the Pockels effect. In effect, refract
index increases in the region of the beam leading to s
trapping and subsequent soliton propagation. The forma
of one- and two-dimensional screening solitons has b
demonstrated in a few photorefractive crystals includ
barium titanium oxide~BTO! and strontium barium niobat
~SBN!. Further, soliton interactions have also been stud
and such effects as soliton spiraling, fusion, birth, and an
hilation have been observed@5–10#. All these studies have
been performed in bulk photorefractive crystals. Recentl
has been demonstrated that screening solitons can als
formed in planar optical waveguides@11#. In this particular
case, the waveguide was formed by an ion implantation
a SBN photorefractive crystal. By applying an electric fie
of 2.6 kV/cm spatial solitary beams of width of 8mm have
been observed. The same group also demonstrated ex
mentally the interaction of solitons in the planar wavegu
@12#.

An interesting aspect of these works is the fact that
SBN waveguide exhibits different photoconductive prop
ties than does the bulk crystal. It is known that in the bu
crystal the photoconductivity is proportional to the light i
tensity. Consequently, the theoretical model governing s
ton propagation corresponds to that of typical saturable n
linearity ~with the nonlinear term inversely proportional
the light intensity! @1,2,4#. On the other hand, the photoco
ductivity in the planar waveguide was found to depend
the square root of the light intensity@11,12#. This sublinear
dependence will affect the profile of the generated soliton
well as their interaction.

In this work we will analyze the theoretical model fo
formation of solitons assuming the photoconductivity mo
as reported for SBN planar waveguides. We will show t
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the corresponding propagation equation has an exact ana
cal solution. We will use this solution to study the stabili
and interaction of the solitons. We will also illustrate th
effect of a diffusive contribution to the nonlinearity on th
trajectory of the soliton beam.

We consider the propagation of a one-dimensional opt
beam with an amplitudeũ(x,z)exp(ik0z) in an externally bi-
ased photorefractive medium, wherek0 is a wave vector. We
assume that the beam propagates along thez axis and the
biasing field is applied along thex axis. An additional uni-
form, broad beam provides the background illumination. T
formation of the space charge field~with an amplitudeEW )
can be phenomenologically described by the set of equat
@13#

jW5sEW , ~1a!

div jW50, ~1b!

wherejW is the current density ands is the photoconductivity.
Now, following the experimental evidence of Ref.@12#, we
assume that the photoconductivity of the crystal varies w
illumination as

s}AI 1I 0, ~2!

whereI 5uũ(x)u2 and I 0 are the beam and background lig
intensities, respectively. Then, assuming that all quanti
depend on a single transverse coordinate~x! we get from Eq.
~1b! that the current density is constant,j (x)5const5 j 0.
Using this relation in Eq.~1a! we find that the electric field
depends on the light intensity as

E~x!5E0

AI 0

AI 1I 0

, ~3!

with E0 denoting the applied field in the absence of the so
ton beam. This electric field modulates the refractive ind
of the crystal via the electro-optic effectDn5r e f fE(x),
wherer e f f is the effective electro-optic coefficient. Substitu
ing Dn into the wave equation we obtain, in the slowly var
2010 ©2000 The American Physical Society
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ing envelope approximation, the following dimensionle
equations for the beam amplitudeu(x):

i
]u

]z
1

1

2

]2u

]x2
2

u

Auuu211
50, ~4!

where the beam’s amplitude has been normalized to b
ground intensity@u(x,z)5ũ(x,z)/AI 0#. It is clear that the
nonlinear term responsible for the self-focusing is of sa
rable character. For small beam intensity the nonlinearit
just that of Kerr material, while it saturates for high intensi
Interestingly, exactly the same propagation equation
been derived earlier by Segevet al. @14# using a perturbative
approach to screening solitons in a SBN crystal in the cas
high light intensity. Also, a similar equation has been stud
in the context of soliton propagation in plasma@15#.

We will be looking for the stationary soliton solution t
Eq. ~4! in the form

u~x,z!5u~x!exp~ iGz!, ~5!

whereG is the propagation constant. After substituting E
~5! into Eq. ~4! and integrating once we find that the amp
tudeu(x) satisfies the following first-order differential equ
tion:

du

dx
56~2Gu214A11u224!1/2, ~6!

where the propagation constantG is given by

FIG. 1. Soliton profile for various levels of saturation.

FIG. 2. Soliton width as a function of peak intensity.
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A11u0

221

u0
2

, ~7!

with u0 being the peak amplitude of the soliton. It turns o
that Eq.~6! can be integrated and as a result one obtains

x5
2

A2uGu
S sin21

A11A11u2A2uGu

2
2p/2D

~8!

2
1

A8~12uGu!
lnS 2Am3w1m2y12m3

m2y012m3

y0

y D ,

where we introduced

y5A11u221,

y05A11u0
221,

w5m1y21m2y1m3 ,
~9!

m1522uGu,

m254~122uGu!,

m358~12uGu!.

Therefore Eq.~8! gives an implicit relation between the sol
ton amplitude and the spatial coordinate. In the case of
light intensity, i.e., foruu0

2u!1, we obtain from Eq.~8! the
well-known sech profile for the Kerr soliton. In Fig. 1 w
show a few examples of the soliton intensity profile for va
ous degrees of saturation~determined by the soliton’s pea
intensity!. It is evident that with increasing intensity the so
ton becomes wider. This is because the saturation-indu
weakening nonlinearity can only support a low-diffractio
wider soliton. From the solution Eq.~8! one can obtain an
explicit relation between the soliton full width at half max
mum ~FWHM! x0 and its peak intensity. This relation i
plotted in Fig. 2. It reflects behavior typical for a saturab

FIG. 3. Soliton power~Q! as a function of propagation consta
(G). Its monotonic growth indicates linear stability of solitons.
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nonlinearity. For small beam amplitudes the nonlinearity
sponds in a Kerr-type fashion and the soliton width decrea
with intensity. For high intensity the nonlinearity saturat
and the soliton width increases in order to minimize the
fect of diffraction. As a result, there exist two soliton sol
tions ~high- and low-intensity solitons! having exactly the
same width. This property, known as ‘‘soliton bistability,’’ i
generic for saturable nonlinearity@16#.

An important aspect of any soliton solution is its stabilit
It is well known that in the case of fundamental solitons t
stability properties can be determined from the depende
of the soliton powerQ5*2`

` u2(x)dx on the propagation
constantG. Solutions are stable~unstable! if dQ/dG.0
(,0) @20,21#. Using Eq.~6! one can find explicitly the rela
tion Q(G). This relation is plotted in Fig. 3. ClearlyQ mono-
tonically increases withG, which is an indication of the sta
bility of the solitons. To demonstrate this stability w
numerically integrated Eq.~4! using exact solutions as a

FIG. 4. Stability properties of the solitons Eq.~8!; ~a! propaga-
tion of an exact soliton solution;~b! propagation of the initially
perturbed exact soliton solution.
-
es

-

ce

initial condition. In Fig. 4 we show propagation of the ind
vidual soliton. The graph in Fig. 4~a! illustrates unperturbed
propagation while that in Fig. 4~b! corresponds to the cas
when the initial soliton was perturbed by increasing its a
plitude by 20%. It is evident that solitons are indeed stab

Of great importance, from the practical point of view, a
the collisional properties of solitons. It is well known th
solitons described by integrable models are robust and
lide elastically, preserving their shape and structure. On
other hand, in the case of nonintegrable models, soliton
teraction is, in general, inelastic. As the saturable nonline
ity model discussed here is nonintegrable, the outcome of
soliton collision depends critically on the degree of satu
tion and intersection angle. For large interaction angles
collision is almost elastic and both solitons preserve th
intensity profiles, experiencing only lateral shifts. We a
dealing with a different scenario for smaller interactio
angles. If the soliton intensity is low then the beams colli
almost elastically~as Kerr-medium solitons do!. For large
saturation~i.e., high peak intensity! the collision becomes
inelastic. Not only is the radiation always emitted from t

FIG. 5. Collision of~a! low- and ~b! high-intensity spatial soli-
tons; ~a! soliton fusion;~b! birth of soliton.
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impact area but also the outcome of the collision stron
depends on the relative phase of the solitons@17,18#. In par-
ticular, two solitons colliding in phase at small intersecti
angle may merge, forming a high-intensity broad solito
This situation is displayed in Fig. 5~a!. On the other hand
increasing the intersecting angle slightly leads to format
of an additional soliton. This is the so-called ‘‘soliton birth
@18,19# that has been recently observed in experiments w
bulk SBN photorefractive crystal@8# as well as a plana
waveguide@12#. Figure 5~b! shows just that. Two incoming
high-intensity spatial solitons intersect and as a result
beam interaction, three new solitary beams emerge from
impact area. This phenomenon can be used to construct
sive multiport optical switches.

So far in our discussion, the nonlinearity that is respo
sible for formation of screening solitons was of local natu
However, it is well known that the photorefractive effe
leads also to a nonlocal contribution to the refractive ind
change. This contribution, caused by diffusion of photo
cited charge carriers, leads to change of the beam’s tra
tory, the so-called self-bending effect@22,23#. Its role be-
comes important for very narrow optical beams. It can
shown that the self-bending effect can be taken into acco
by adding to the left-hand side of the propagation equa
~4! an additional term

g
1

~11uuu2!

]uuu2

]x
, ~10!

where the parameterg determines the relative strength of th
diffusive contribution to the total refractive index change.
show the effect of this term on soliton propagation we in
grated the modified propagation equation using an exact
ton solution as an initial condition. The result of integrati
is shown in Fig. 6 where the self-bending of the soliton
clearly visible.

In conclusion, we investigated properties of on
dimensional spatial solitons in photorefractive material w
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a sublinear dependence of photoconductivity on light int
sity. This type of photoconductivity has been observed
thin films of strontium barium niobate crystals. It results in
saturable character of the photorefractive nonlinearity w
the light-induced refractive index change being invers
proportional to the square root of the light intensity.

We found exact analytical soliton solutions to the cor
sponding nonlinear Schro¨dinger equations. We showed th
these solitons are stable in propagation. Their collisions
in general inelastic and typical for those described by ot
nonintegrable models. In particular, they may result in so
ton fusion or formation of new solitons. However, because
weaker dependence on light intensity than, e.g., in the c
of standard screening solitons, here the inelastic characte
collisions becomes evident at higher light intensities. W
also showed that the presence of diffusion of photoexc
charges results in self-bending of the solitons.

FIG. 6. Diffusion-induced self-bending of the screening solito
parameterg50.01.
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@10# W. Królikowski, C. Denz, A. Stepken, M. Saffman, and B
Luther-Davies, Quantum Semiclassic. Opt.10, 823 ~1998!.

@11# D. Kip, M. Wesner, V. Shandarov, and P. Moretti, Opt. Le
23, 921 ~1998!.

@12# D. Kip, M. Wesner, C. Herden, and V. Shandarov, Appl. Ph
B: Lasers Opt.B68, 971 ~1999!.

@13# G. S. Garcia Quirino, M. D. Iturbe Castillo, J. J. Sanche
Mondragon, S. Stepanov, and V. Vysloukh, Opt. Commu
123, 597 ~1996!.

@14# M. Segev, M. Shih, and G. Valley, J. Opt. Soc. Am. B13, 706
~1996!.

@15# M. Y. Yu, P. K. Shkula, and K. H. Spatschek, Phys. Rev.
18, 1591 ~1978!; P. K. Shkula, M. Y. Yu, and N. L. Tsint-
sadze, Phys. Fluids27, 327 ~1984!.

@16# S. Gatz and J. Herrmann, Opt. Lett.17, 484 ~1992!.
@17# S. Cowan, R. H. Enns, S. S. Rangnekar, and S. Sanghera,

J. Phys.64, 311 ~1986!.
@18# A. Snyder and A. Sheppard, Opt. Lett.18, 482 ~1993!.
@19# J. Oficjalski and I. Bialynicki-Birula, Acta Phys. Pol. B9, 759



ys

pt.

.

2014 PRE 61WIESLAW KRÓLIKOWSKI et al.
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