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Analytical solution for photorefractive screening solitons
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We study formation and interaction of one-dimensional screening solitons in a photorefractive medium with
sublinear dependence of the photoconductivity on light intensity. We find an exact analytical solution to the
corresponding nonlinear Scliinger equation. We show that these solitons are stable in propagation and their
interaction is generic for solitons of saturable nonlinearity. In particular, they may fuse or “give birth” to new
solitons upon collision.

PACS numbg(s): 42.65.Tg, 42.65.Jx, 42.65.Hw

The subject of screening spatial optical solitons in photothe corresponding propagation equation has an exact analyti-
refractive crystals has attracted great interest in recent yearsal solution. We will use this solution to study the stability
Screening solitons can be created using a very low opticeand interaction of the solitons. We will also illustrate the
power of the order of microwattgl—4]. They are formed €ffect of a diffusive contribution to the nonlinearity on the
when the presence of an optical beam results in the screeniriggjectory of the soliton beam. _ _ _
of the external biasing dc field by a space charge field in- We consider the propagation of a one-dimensional optical
duced by distribution of photoexcited charge carriers. Thébeam with an amplituda(x,z)exp(ky2) in an externally bi-
resulting effective electric field modulates the refractive in-ased photorefractive medium, whesgis a wave vector. We
dex of the medium via the Pockels effect. In effect, refractiveassume that the beam propagates alongzthgis and the
index increases in the region of the beam leading to selfbiasing field is applied along the axis. An additional uni-
trapping and subsequent soliton propagation. The formatioform, broad beam provides the background illumination. The
of one- and two-dimensional screening solitons has beefprmation of the space charge fie{dith an amplitudeE)

demonstrated in a few photorefractive crystals includingcan be phenomenologically described by the set of equations
barium titanium oxidgBTO) and strontium barium niobate (513]

(SBN). Further, soliton interactions have also been studie

and such effects as soliton spiraling, fusion, birth, and anni- j*: oE, (1a
hilation have been observg8-10Q. All these studies have
been performed in bulk photorefractive crystals. Recently it divj=0, (1b)

has been demonstrated that screening solitons can also be

formed in planar optical waveguid¢s1]. In this particular  wherej is the current density andl is the photoconductivity.
case, the waveguide was formed by an ion implantation intqyow, following the experimental evidence of Ré12], we

a SBN photorefractive crystal. By applying an electric field gssume that the photoconductivity of the crystal varies with
of 2.6 kV/cm spatial solitary beams of width of8m have  jjjumination as

been observed. The same group also demonstrated experi-
mentally the interaction of solitons in the planar waveguide oxyl+1g, (2
[12].

An interesting aspect of these works is the fact that thevherel = |Tj(x)|2 andl, are the beam and background light
SBN waveguide exhibits different photoconductive proper-intensities, respectively. Then, assuming that all quantities
ties than does the bulk crystal. It is known that in the bulkdepend on a single transverse coordiri@ieve get from Eq.
crystal the photoconductivity is proportional to the light in- (1b) that the current density is constan{x)=constj,.
tensity. Consequently, the theoretical model governing soliUsing this relation in Eq(1a we find that the electric field
ton propagation corresponds to that of typical saturable nordepends on the light intensity as
linearity (with the nonlinear term inversely proportional to
the light intensity [1,2,4]. On the other hand, the photocon- E(x)=E Vio
ductivity in the planar waveguide was found to depend on -0 M'
the square root of the light intensift1,12. This sublinear
dependence will affect the profile of the generated solitons awith E, denoting the applied field in the absence of the soli-
well as their interaction. ton beam. This electric field modulates the refractive index

In this work we will analyze the theoretical model for of the crystal via the electro-optic effeddn=r.+E(x),
formation of solitons assuming the photoconductivity modelwherer .¢; is the effective electro-optic coefficient. Substitut-
as reported for SBN planar waveguides. We will show thating An into the wave equation we obtain, in the slowly vary-

)
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FIG. 3. Soliton poweKQ) as a function of propagation constant

FIG. 1. Soliton profile for various levels of saturation. . A : p .
P (I"). Its monotonic growth indicates linear stability of solitons.

ing envelope approximation, the following dimensionless
equations for the beam amplitudéx): re_ Vitug—1 @
us

du . 1 4%u u 0 @

l—+t 5 —F7——==0, with ug being the peak amplitude of the soliton. It turns out

z 2 9x2  Jlul? 0 ) -

z X ul*+1 that Eq.(6) can be integrated and as a result one obtains
where the beam’s amplitude has been normalized to back- >
~ 2 V1+y14+usy2|T

ground intensity{ u(x,z)=Uu(x,z)/1o]. It is clear that the X= (sinl T —77/2)
nonlinear term responsible for the self-focusing is of satu- V2|T| 2
rable character. For small beam intensity the nonlinearity is (8
just that of Kerr material, while it saturates for high intensity. 1 2\ uaW+ oy +2u3 Yo
Interestingly, exactly the same propagation equation has - 81T n LoYot 2pts 7

been derived earlier by Segeval.[14] using a perturbative
approach to screening solitons in a SBN crystal in the case §/(/here we introduced
high light intensity. Also, a similar equation has been studie
in the context of soliton propagation in plasirib].
We will be looking for the stationary soliton solution to y=v1+u-1,
Eqg. (4) in the form

Yo=+v1+uj—1,

u(x,z)=u(x)expil'z), (5)
wherel is the propagation constant. After substituting Eq. W= Y2+ oy + ug,
(5) into Eq. (4) and integrating once we find that the ampli- 9
tudeu(x) satisfies the following first-order differential equa- __
tion: p1=—2[T],
du u2=4(1-2[T|),
5= I A TR -4y ©®) ’

m3=8(1=[T).

Therefore Eq(8) gives an implicit relation between the soli-
ton amplitude and the spatial coordinate. In the case of low
light intensity, i.e., for|u(2)|<1, we obtain from Eq(8) the
well-known sech profile for the Kerr soliton. In Fig. 1 we
show a few examples of the soliton intensity profile for vari-
ous degrees of saturatidgdetermined by the soliton’s peak
intensity). It is evident that with increasing intensity the soli-
ton becomes wider. This is because the saturation-induced
weakening nonlinearity can only support a low-diffraction
wider soliton. From the solution Eq8) one can obtain an
explicit relation between the soliton full width at half maxi-
mum (FWHM) x, and its peak intensity. This relation is
FIG. 2. Soliton width as a function of peak intensity. plotted in Fig. 2. It reflects behavior typical for a saturable

where the propagation constdntis given by

Soliton width

0.1 1.0 10.0 100.0 1000.0
Peak intensity



2012 WIESLAW KROLIKOWSKI et al. PRE 61

(a)

Intensily
inlensily

b
Q
Co
T

diStanCe

20

0 -——__./
—~10 =
spat; S 10
al COordinate

—
SPatial cgopgt0 20

nNate

ntensily
"
&
0

intensily

f/ﬁiF[/%FFF

. o o
Spatiaj °°°rdi?1afo 30
e

FIG. 5. Collision of(a) low- and(b) high-intensity spatial soli-
tons; (a) soliton fusion;(b) birth of soliton.

FIG. 4. Stability properties of the solitons E®); (a) propaga-
tion of an exact soliton solution(b) propagation of the initially initial condition. In Fig. 4 we show propagation of the indi-
perturbed exact soliton solution. vidual soliton. The graph in Fig.(d) illustrates unperturbed

propagation while that in Fig.(#) corresponds to the case

nonlinearity. For small beam amplitudes the nonlinearity rewhen the initial soliton was perturbed by increasing its am-
sponds in a Kerr-type fashion and the soliton width decreasegsiitude by 20%. It is evident that solitons are indeed stable.
with intensity. For high intensity the nonlinearity saturates Of great importance, from the practical point of view, are
and the soliton width increases in order to minimize the efthe collisional properties of solitons. It is well known that
fect of diffraction. As a result, there exist two soliton solu- solitons described by integrable models are robust and col-
tions (high- and low-intensity solitonshaving exactly the |ide elastically, preserving their shape and structure. On the
same width. This property, known as “soliton bistability,” is other hand, in the case of nonintegrable models, soliton in-
generic for saturable nonlinearify6]. teraction is, in general, inelastic. As the saturable nonlinear-

An important aspect of any soliton solution is its stability. ity model discussed here is nonintegrable, the outcome of the
It is well known that in the case of fundamental solitons thesoliton collision depends critically on the degree of satura-
stability properties can be determined from the dependencgon and intersection angle. For large interaction angles the
of the soliton powerQ=[*_ u?(x)dx on the propagation collision is almost elastic and both solitons preserve their
constantl’. Solutions are stabl¢unstable if dQ/dI'>0 intensity profiles, experiencing only lateral shifts. We are
(<0) [20,21. Using Eq.(6) one can find explicitly the rela- dealing with a different scenario for smaller interaction
tion Q(I'). This relation is plotted in Fig. 3. Clearly mono-  angles. If the soliton intensity is low then the beams collide
tonically increases with’, which is an indication of the sta- almost elastically(as Kerr-medium solitons doFor large
bility of the solitons. To demonstrate this stability we saturation(i.e., high peak intensijythe collision becomes
numerically integrated Eq4) using exact solutions as an inelastic. Not only is the radiation always emitted from the
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impact area but also the outcome of the collision strongly oo
depends on the relative phase of the solitdis1§. In par- o.sf
ticular, two solitons colliding in phase at small intersecting
angle may merge, forming a high-intensity broad soliton.
This situation is displayed in Fig.(&. On the other hand,

increasing the intersecting angle slightly leads to formation o

of an additional soliton. This is the so-called “soliton birth”

[18,19 that has been recently observed in experiments with 108}
bulk SBN photorefractive crystdl8] as well as a planar

waveguide[12]. Figure §b) shows just that. Two incoming

high-intensity spatial solitons intersect and as a result of &

beam interaction, three new solitary beams emerge from the 5

impact area. This phenomenon can be used to construct pas- =]

sive multiport optical switches.

inlensily

T

So far in our discussion, the nonlinearity that is respon-
sible for formation of screening solitons was of local nature.
However, it is well known that the photorefractive effect
leads also to a nonlocal contribution to the refractive index
change. This contribution, caused by diffusion of photoex-
cited charge carriers, leads to change of the beam’s trajec-
tory, the so-called self-bending effef22,23. Its role be-
comes important for very narrow optical beams. It can b
shown that the self-bending effect can be taken into accouny sublinear dependence of photoconductivity on light inten-
by adding to the left-hand side of the propagation equatiority. This type of photoconductivity has been observed in
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FIG. 6. Diffusion-induced self-bending of the screening soliton;
eoarametery= 0.01.

(4) an additional term thin films of strontium barium niobate crystals. It results in a
saturable character of the photorefractive nonlinearity with
1 dlul? the light-induced refractive index change being inversely
T ok (100 proportional to the square root of the light intensity.
(L+]u%) We found exact analytical soliton solutions to the corre-

sponding nonlinear Schdmger equations. We showed that

where the parametey determines the relative strength of the these solitons are stable in propagation. Their collisions are
diffusive contribution to the total refractive index change. Tojp general inelastic and typical for those described by other
show the effect of this term on soliton propagation we inte-nonintegrable models. In particular, they may result in soli-
grated the modified propagation equation using an exact solton fusion or formation of new solitons. However, because of
ton solution as an initial condition. The result of integration weaker dependence on light intensity than, e.g., in the case
is shown in Fig. 6 where the self-bending of the soliton isof standard screening solitons, here the inelastic character of
clearly visible. collisions becomes evident at higher light intensities. We

In conclusion, we investigated properties of one-also showed that the presence of diffusion of photoexcited
dimensional spatial solitons in photorefractive material withcharges results in self-bending of the solitons.
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